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Absteact - A decompasition of the displacement and stress ficlds of a ceramic composite specimen
subjected o an Cofl-axis” compressive loading illows the simulation of creep and load refaxation
by itegrating o gencralized two-dimensional boundary value problem in time, A continuum
approach is used for the composite model, with the matnix and fiber being deseribed by nonlinear
Maxwell Huid constitutive relations. The fiber matrix interface is deseribed as an infinitely thin
Leyer, in which a Coulomb friction constitutive model is used for the traction displicement response.
This paper describes a fundiamentally based micromechanical model in conjunction with several
tools required for its solution, including an incremental plasticity formulation and a singular yicld
suriace provision that utilizes proportional stressing. The resulting solution predicts the existence of
a steady-state ereep rate for the composite, which is a function of the fiber orientation angle, the
stress exponent and the friction coetlicient of the fiber matrix interfisce. Several conclusions are
presented concerning the ability of this methodology to assess the rheologic response and intertacial
mechanical behavior of ceramic composites at elevated temperatures,

1. INTRODUCTION

The room temperature behavior of the fiber-matrix interface during inelastic deformations
of ceramic composites has been studied analytically by Aveston et al. (1971) (ACK theory),
Budiansky et al. (1986). Aboudi (1989), Evans ¢r al. (1989). Achenbach and Zhu (1989)
and others. Micromechanical measurement techniques, such as the fiber indentation test
[see e.g. Marshall and Oliver (1987)] have provided some limited quantitative information
regarding interfucial behavior. Measurement of the fracture properties through bulk com-
posite deformation and a statistical correlation to interfucial propertics has been introduced
by Thouless ¢r al. (1989). Onc drawback of these measurement techniques is the exper-
imental errors introduced by residual stresses, test specimen geometry and free surface
effects, fiber breakage, cte.

Interface cffects on the creep of metal matrix composites have been examined by
Dragone and Nix (1990), Goto and McLean (1991), Brokenbrough er af. (1991), Evans er
al. (1990) and others. The primary objective of these models is to predict the bulk composite
behavior based upon constitutive models of the matrix and interface. We are considering
the antithesis of this approach for the application to ceramic composites. Specifically, the
premise of the present work is to analytically examine the role of interface deformations in
the bulk creep/load relaxation response of a cerumic composite subjected to an off-axis
compressional loading. We then use this information to predict the interfacial behavior of
the composite.
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The model developed for this purpose is summarized and discussed relative to using
the ideas for quantifying the interfactal mechanical behavior during high temperature
deformation. The predictions of the model are compared to experimental results obtained
on a ceramic composite system where a calcium aluminosilicate matrix is reinforced with
continuous silicon carbide fibers (Chyung er al.. 1986): the experimental results are
described fully in Mever et al. (1992a).

The generality of the composite rheology model has been maintained in the interest of
extending these ideas to other materials and geometries. The two constitutive models being
used to illustrate the method for ceramic composites are a nonlincar Maxwell fluid for the
continuum elements of the composite (fiber and matrix), and a Coulomb friction idealization
for the fiber-matrix interface. The solution of the incremental boundary value problem
which incorporates these features has required the use of several analytical tools. including
a non-Newtonian bulk rheology in three-dimensions and a penalty method coupled with
an incremental plasticity formulation to account for the contact friction at the interface. In
addition. several developments were required to solve the composite problem. including a
deformation theory for solving the problem of a singular yield surface and several numerical
procedures including a specialized time integration scheme [the numerical developments
are fully described in Mayer et al. (1992b)). These features will be illustrated in the following
developments, after which the results and implications for the composite problem will be
discussed.

2. GENERAL APPROACH TO THE COMPOSITE MODEL

In order to correlate the mechanical response of the interface to the bulk composite
response, the concept of equivalent homogencity will be used (Christensen, 1979) to describe
the composite stress and deformation at two distinet lengthscales, the mesoscale and the
microscale, The mesoscale, with a length scale of the order of 10 fiber diameters, remains
measurably small with respect to the characteristic dimensions of the sample. The micro-
scale, then, considers the stress and deformation ficlds associated with a length scale of the
order of u single fiber: it is, however, sufliciently large such that the continuum hypothesis
is rational. In this work, the mesoscale is subdivided into some characteristic unit of
representittion, specifically the microscule, on which the stress and deformation analyses
are completed ; the unit results are then redefined in terms of the mesoscale.

The equivalent homogeneity concept is used to model the effect(s) of varying the fiber
orientation angle (relative to the applied compressive load) of a unidirectional, continuous
fiber-reinforced ceramic composite subjected to a compressive mesoscale stress at elevated
temperatures, as iltustrated in Fig, 1(a). Several assumptions concerning the mesoscale and
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Fig. 1. Off-axis decomposition: (a) Compression specimen with the applied compressive loading
(7,,). (b) Unit-cell microscale model. The coordinate systems are shown corresponding to the
specimen (v, v, 2) and the microscale model (x,, v, x,).
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microscale stress and deformation fields are required in order to employ a two-dimensional
analysis. The first assumption is that the mesoscale stress field is homogeneous : uncon-
strained translation and, or rotation of the compression specimen ends is permitted. This
assumption allows the microscale analysis to be done on an isolated single fiber, or on a
small group of fibers. at some arbitrary point along its (their) length. since the mesoscale
fields do not vary in the fiber direction. A microscale assumption, then, is that the composite
can be represented as two isotropic. distinct materials, the fiber and the matrix, separated
by an infinitesimally thin interface.

The assumption of a single unit-cell model as a characteristic unit of representation is
taken in this discussion [see Fig. 1(b)]. however the ideas developed here could be used on
any geometrically consistent group of fibers {see e.g. Brokenbrough er a/. (1991)]. With this
in mind, the developments that follow will retain a certain degree of generality, thus allowing
for the possibility of differing geometrical models.

Considering the microscale analysis of Fig. 1(b) (without loss of generality, set the
thickness ¢ equal to unity). a separation of in-plane and out-of-plane deformations is
assumed.

= w (). X)) uy = Ux(X X)), uy = (X, X))+ X8, n

where u, are displacements and the out-of-plane strain, &,,. is not a function of the spatial
coordinates. Compatibility requirements for the mesoscale, along with the symmetry con-
ditions apparent in Fig. 1{b). can be stated as

wi(hoxy) = tui. wlx £b) = tul, G(x,, £b) = 2us, (2

where the 4fs are constants. Equilibrium will be satisfied between the mesoscale and micro-
scale stress ficlds in an average sense, by transforming the average mesoscale stress to a
coordinate system corresponding to the fiber orientation:
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where F¥ is the local force vector associated with the common degrees of freedom, the
superscript A denotes the average of the surface tractions (1) applied to the unit-cell, i.e.

j t,dS
A r= :

A

ThE Ty v Ry =T = T

and S denotes surface arca. Equations (2) and (4) make up the boundary conditions for
the microscale model. Note that the natural and essential boundary conditions are of a
mixed form since the us of (2) and the traction distributions in (4) serve as the unknown
parameters.

Finally, the displacements from the microscale model must be transformed back to the
mesoscale coordinate system. The average strains are defined to be

SAS 29:20-J
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and are transformed back to the y—: coordinate system to obtain,
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where the boundary surfuce displacement requirements of (2) were used (considering the
first quadrant). One should note that both equilibrium and continuity have been maintained
between the microscale and mesoscale using this decomposition. Additionally, this
decomposition reduces to the usual result for a homogeneous, tsotropic material,

For completeness’ sake, mention should be made concerning the separation of the in-
and out-of-planc displacements [cf. eqn (1)] for a fiber-reinforced matenial. An implicit
assumption is that the fiber aspect ratio is large with respect to the microscale, since the
end cffects created by fiber sliding would become important if this were not the case. If
there were no tractions developed on the interface (i.e. a perfectly smooth interface), the
assumption of (1) would cleurly not be reasonable.

3. CONSTITUTIVE MODELS AND PROBLEM STATEMENT

To model the time-dependent rheologic response of the composite, a mechanical
constitutive theory is used. The continuum elements of the composite (i.e. the fiber and the
matrix) are modeled as a nonlinear Maxwell fluid, which is a model often used to describe
the steady-state shearing response of metals and ceramics (Cannon and Langdon, 1987),

. e " G .{a.Y
=L tEn =0 +4 . (7

where g, and ¢, indicate stress and strain in pure shear, superscripts € and ¢ denote elastic
and creep respectively, the superposed dot denotes the material time rate and A is an inverse
characteristic time, i.c. the ratio of the shear modulus G to some characteristic viscosity.
To generalize (7) to three-dimensions for an isotropic material (and small gradients in
displacement), an assumption relating to the direction of the creep strains s,

£ =4S, 8)

where x is a scalar and E and S are the deviatoric strain and stress tensors, respectively.
Equation (8) is analogous to the Prandtl-Reuss associated flow rule using a von Mises yield
function (Hill, 1950).

By equating the plastic work of a general, three-dimensional deformation with that of
pure shear, (7) and (8). along with thc following definition of an effective stress:
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allows the generalized deviatoric constitutive relation to be written as

$ (5)5
i =, 10
=367 3 (10)
Employing an assumption of elastic compressibility,

¢ = 3K¢ (an

where the tilde indicates the hydrostatic components and K is the elastic bulk modulus,
along with the deviatoric constitutive relation of (10) and the definitions of deviatoric stress
and strain. allows the total stress rate tensor to be written as,

S(1)

T(1) = G(Vi(0) + Va()) + (K- 1G) tr [Va(o)l - 201(‘(’)) S0,

(12)

where small displacements (u) and small displacement-gradients (Vu) are implied.

Foran interface constitutive law, there are a number of features that must be accounted
for if the full deformation behavior of a ceramic composite interface at an elevated tem-
perature is to be considered. These features include (1) debonding in a mixed-mode loading,
{2) cavitation (decohesion of the interface) for tensile normal tractions, (3) deformation
history dependence, (4) rate-dependent effects for the slip and shearing behavior, and
(5) the normal traction dependence of the shearing deformations. Perhaps the simplest
constitutive law which considers (2), (3) and (5). is Coulomb friction including interface
tensile opening, i.e.

it < ut,, fore, <0, t=0, forfu]-n<0, (13a,b)

where the [u] = u'—u/ (see Fig. 2), the normal n = n' (the outward pointing normal of
phase i), tractions are defined ast =t' = T'on', t, = t'-n/, |t| is the Euclidean norm of the
tangential tractions on the surface, and the cocflicient of friction y is assumed to be constant.
This constitutive law is implemented using an incremental plasticity formulation, thus a
dependence on the deformation history is also maintained. For simplicity, this constitutive
law is used in the ensuing analysis to describe the fiber-matrix interface behavior for the

l' (Prescribed
Tracuons)

Q.

Discontinuity Zone

rg (Prescribed
Displacements)

Fig. 2. Variable definitions for the problem description. Here two contacting bodies €2, and €, (with
prescribed traction and displacement conditions I, and [, respectively). are separated by an
infimtesimally thin discontinuity zone with normal a.
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composite, even though it does not consider rate-dependent effects or debonding. The effects
of interface debonding are discussed further in Section 5.

With the constitutive laws of (12) and (13). the general boundary value problem of n
contacting bodies (Q,. i = 1, n; ¢.f. Fig. 2) can now be stated. The bodies are assumed to
be separated by infinitesimally thin interface regions. of which the tractions across these
regions are, in general, history dependent (as previously discussed, a rate form is appro-
priate). For a quasistatic, small-displacement gradient. small-displacement formulation, the
problem can be stated as,

For each body Q.. find a velocity u,: §2, = R*, such that each u,€ 5,
where §; = {OIV oT+f=00nQ,.
i=gonl,nQ.Ton=hon[,nQ,

[t]=0and[u]-n<Oon i QN ier[d(r)ﬂ-n dr = 0}, (14)

J=lij

where the stress derivative is defined in (12), the @, are assumed to be sufficiently smooth
such that the required derivatives exist, the bar indicates the closure of the region, R’
indicates three-dimensional real space, [ indicates the body force, I', is the surface over
which velocities are prescribed (see Fig. 2), T, is the surface over which traction rates are
prescribed, and outward pointing normals have been defined as positive. Using (13) the
interface tractions are formulated in terms of displacement jumps in the following section.

4. CONTACT FRICTION TREATMENT

The contact friction is treated using a nonassociated-flow-rule plasticity formulation
with a penalty method for enforcing the infinitesimally thin character of the interface. This
development is for the non-opening interface, i.e. (13a) [(13b) will be treated as a prescribed
zero-traction condition at the end of this section] ; the treatment is an extension of the work
by Plesha er al. (1989). Appendix A summarizes the development of the incremental theory.
Note that this treatment difters from that of Achenbach and Zhu (1989) ; they examined
the role of a finite interphase between the fiber and matrix by varying E° in the case of a
tensile loading perpendicular to the fiber direction. We are using an infinitesimally thin
interphase.

One of the implicit assumptions for the incremental solution methodology derived in
Appendix A is that of a well-defined yield surface and corresponding slip direction ; specific-
ally, the derivative of the slip potential given in (A.3) must exist (i.e. the yield surface
cannot be singular). The composites problem does not satisfy this requirement for the
solution during the initial loading for the idealized Coulomb friction law of Fig. 3(a). To
illustrate this point, consider the unit-cell representation of Fig. 1 for a two-dimensional
loading case (¢ = 90°) with full bonding between the fiber and matrix and let the fiber and
matrix have identical elastic propertics. With the appropriate transformations, it can be

(a) (b}

Fig. 3. [nterface constitutive laws : (a) Perfect Coulomb friction. (b) Coulomb friction plus a cohesive
strength, c.
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shown that the normal and shear tractions along the interface are given by t, = —0o,,c0s*3
and ¢, = g,,c0s 3sin J, respectively (the angle 3 is defined in the inset of Fig. 6). Thus for
the idealized Coulomb friction, as illustrated in Fig. 3(a), the ratio —1,/t, = tan 3 provides
the minimum value of the friction coefficient that will prevent slip from occurring. Since
tan 3 approaches infinity as 3 approaches 90°, slip will occur for an infinitely small amount
of loading.

It is clear that an analysis of the composites debonding problem would be formidable,
thus an idealization must be made in the constitutive relation as it pertains to debonding.
The approach pursued here is to simply ignore the debonding question completely for the
initial step loading of the composite, and use an idealized Coulomb friction model as
presented in (13) (Fig. 3(a)). To avoid the singularity of the yield surface, one could
artificially redefine the yield surface with some unknown cohesive strength, as shown in Fig.
3(b). A computationally superior option would be to make the assumption of proportional
stressing, similar to that proposed by Hencky for associated plasticity {e.g. Chakrabarty
(1987)].

T = 2()T. (13

where a(¢) is a scalar loading parameter. This approach is pursued here.

To develop a solution methodology, based upon the assumption of proportional
stressing, that is compatible with the incremental formulation of Appendix A, the governing
equations given in the incremental formulation are integrated as follows:

[0] = [a]s +{o] - [u] = [u]*+[u]". t = Efa] -t = E<[u]", (16a,b)
7 o .
([aﬁe«x‘m ~[l=A" F=0 and F=0-F=0 (16c, d)

Combining (16a) -(16¢) to obtain,

= w({[u'ﬂ -A%”). an

t

and requiring t to satisfy the yield criterion [i.e. (16d) for which F is given in (A4)], gives,

ly = 5,
(e =)
"ﬂEn[[un]]

Using the yield condition with (18), A is written in terms of relative displacement jumps,
and substituted back into (17) thus allowing the tractions to be written as a function of the
relative displacements,

(18)

t = Efu].
E, 0 0
—nE,[u,]
where E= |0 el 0 (19)
—1E,[u,]
0 ] S |
° i

with |[[u,]]l indicating the Euclidean norm of the tangential displacement jumps. When
combined with the yield and separation conditions given in (13), the full constitutive law
for the deformation theory is written as,
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t = E®[u].
Es, [u]-n>0:F<0,
where E? =< E [u-n>0:F=0, (20)

0. [u]'n<o.

By neglecting the viscoelasticity term (i.e. a step loading function in time), (14) can also be
integrated in time, which. when coupled with (20), gives a nonlinear, displacement-based
equation ; a numerical algorithm used for solving this equation is developed in Meyer et al.
(1992b).

5. SOLUTION METHODOLOGY

The solution of the unit-cell boundary value problem described above is approximated
by using a finite element discretization over the continuum and interface surfaces (Qiu ¢r
al.,, 1991). The final form of the discretized equations is outlined in Appendix B. This
discretization is coupled with a Newton-Raphson algorithm for the initial solution [eqns
(20) and an integrated form of (14)], and a radial corrector algorithm for the incremental
solution [eqns (A6) and (14)].

The nonassociated flow rule of (AS) results in a boundary value problem which is not
self-adjoint, thercfore the resulting stiffness matrix is nonsymmetric. Figure 4 illustrates the
profile of the stiffness matrix due to the cffects of the boundary conditions given in (2). A
specialized equation solver which takes advantage of the sparsity of the stiffness matrix was
devised (Mceyer et al., 1992b).

6. LOAD RELAXATION

By partitioning the stiffness matrix as illustrated in Fig. 4 and using the transformations
of (3) and (6), the discretized equations are rewritten in terms of the mesoscale strains and

stresses,
[KAA KAB:] {aA} {‘ A} [ KAA KAB i ! :] { ,\} - { ,\} Zl
KBA KBB u’ ' ¢ I~ IKBA r- ! Klm i - gt a* ( )

where d* and F* are the displacement and force vectors associated with the internal degrees
of freedom [c.f. eqns (1) and (2)]. One should note the lack of symmetry in the transformed
stifiness (i.e. the transformation matrices are unsymmetric). With this formulation, the
strain rate £,, can be prescribed in the simulation of load relaxation.

VN

AA

l

/1
Kfa K

|

Fig. 4. Stiffness matrix profile. The unsymmetric block K, corresponds to the gencral common
degrees of freedom ; the other three blocks relate to the common degrees of freedom, ie. &y, and
the uf of eqn (2).
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7. RESULTS AND DISCUSSION

The modeling results presented in this section were obtained by discretizing the unit-
cell problem of Fig. 1(b) with quadratic elements as illustrated in Fig. 5. The solutions using
the iterative and time integration techniques described in Meyer et al. (1992b) were obtained
using the Astronautics Corporation of America Super-Mini Computerk at the University
of Wisconsin-Madison.

The modeling results will be presented as follows. First. a case study is presented for
a Newtonian response (i.e. the stress exponent n = 1), both for creep and load relaxation.
The effects of the fiber orientation angle and the friction coefficient are demonstrated using
material properties that resemble those of the SiC (Nicalon)-alkaline earth aluminosilicate
glass—ceramic composite system. The Nicalon fiber is modeled as elastic {i.e. 4 = 0], with
the properties of, E; = 97 GPa, v = 0.2, and the calcium aluminosilicate glass—ceramic
matrix is modeled as a nonlinear Maxwell fluid (linear for n = 1), with the inttial elastic
properties of E, = 37 GPa. v, = 0.34. The selection of these properties is discussed further
in Meyer et al. (1992a). Following the study of the Newtonian response is an examination
of the effect of the stress exponent for flow of the matrix, when varied from 1 to 3. Finally,
a sensitivity study is presented that explores the effects of changing the initial material
parameters.

To illustrate the stress ficld variations during the creep response of the composite
model without slip or scparation. Fig. 6 contains the time history for the interface tractions
versus circumferential location, for a fiber orientation angle of @ = 60°. One should note
that in the normal pressure evolution the compressive tractions near the top of the fiber
increase in magnitude, as do the tensile tractions on the side, with a point ncar § = 42°
remaining unchanged. The evolution also indicates that a stcady-state stress field is achieved.
Small pressure oscillations were observed (most notably the in-plane (x|, x;) shear, Fig.
6(b)) duc to the clastic compressibility assumption of (11), which, in the case of the steady-
state flow, acts as an incompressible flow constraint, giving rise to spurtous pressure modes.
A reduced integration technique (constant pressures) on the quadratic triangles was used
(Cook et al., 1989) with an inter-clement averaging scheme for pressure smoothing along
the interface.

Figure 7 illustrates the same configuration as Fig. 6 tor the case of a fully-debonded
tiber with a friction coefficient of g = 0.1. In this case a region of opening exists (i.e.
cavitation), with the contacting region extending from 3 = 07 to approximately 3 = 50°,
and receding during the time-dependent deformation to a steady-state value of 3 = 37°
(cavitation will be explored later). Also, as in the bonded case, regions of increase are noted
in the normal tractions. One should also be aware that the interface is in a condition of full

y A4 /L

Matrix

ar [nterface V

Fiber

/

Fig. 5. A finitc clement spatial discretization of Fig. 1(b). The continuum and contact surface were
discretized using 82 quadratic triangles and (2 quadratic contact elements, corresponding to 630
degrees of freedom. The dimensions selected correspond to a volume fiber fraction of 30%.
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Fig. 6. The evolution of the interfuce tractions during creep; a bonded interfuce condition (n =1,

@ = 60", sce text for material properties): (a) Normal tractions. (b) Shear tructions (in-plane x,,

X1: out-of-plune n, x,). Observe the increase in tensile normal tractions near 3 = 90, and the

increase in the magnitude of the compressive normal tractions near 3 = 0”. Also apparent is the
existence of a steady-state stress field.

slip in the initial solution, and the condition of F = 0 s satisfied during the entire simulation.
From Fig. 7, note the in-plane tractions, which were the same order of magnitude as the
out-of-plane tractions (t;) for the bonded case, drop to only 20% of the out-of-plane
tractions for the debonded case ; this indicates the ratio of the out-of-plane to the in-plane
compliance is very high, which is somewhat intuitive. Also, one should observe that the
tractions increase approximately 40% from the initial to the steady-state solution in the
debonded case, compared to only 20% for the bonded case. As a final remark, note the
time evolution of the in-plane tractions, with the final curves exhibiting maximums near
the ends, rather than a single maximum ncar the center.

The far-field displacements are summarized in Fig. 8 for the conditions of Figs 6 and
7, with the three, stcady-state strain rate values noted in the legend. First, one should note
that although the stress ficlds change substantially during creep, the far-ficld displacement
valucs show only small changes during the time evolution ; predicted deformation transients
arc very small. This behavior is somewhat intuitive if the compatibility constraints stipulated
in eqn (2) are recalled, and also from Figs 6 and 7 in that the integral of the tractions
around the interface do not change substantially with time. Both of these factors act to
reduce the sensitivity of the far-field displiacements to the time redistribution of the tractions.
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Fig. 7. The evolution of the interface tractions during creep; a {ully debonded interfuce condition

[u=0.1n=1, ¢ =60} (1) Normul tractions. (b) Shear tractions. A region of increase and a

region of decrease are present, with a cavitation region growing from 3 = 50" to 3 = 377 at the
steady-state.

Figure 9 has been included to illustrate a case where the far field displacement transients
are more pronounced, namely for a bonded interface and a fiber orientation angle of
¢ =90". A much stronger time-history effect is present than in Fig. 8, both in the longi-
tudinal direction and in the direction of the fibers. The transverse strain rate (£..) approaches
zero, as expected, since the elastic fiber constrains the matrix material from additional
deformation in the fiber direction.

If the interfuce deformation is to be ascertained with the modeling just prescribed, the
relationship of the far-ficld displacements and the fiber orientation angle (¢) must be ex-
plored. The far-ficld displacement-related quantity that scems most amenable for this study
{both analytically and experimentally) is the steady-state strain rate, To illustrate, Figs 101 -¢)
demonstrate the relationship between three steady-state strain rates (normalized by 4)
plotted as a function of the fiber orientation angle, for varying interface conditions. One
immediate observation is that the creep rates become more sensitive to the fiber orientation
anglc as the friction coceflicient (g) decreases. Also, the strain rate is most sensitive to the
interface conditions between = 0.2 and ¢ = 1.0 for a constant fiber oricntation angle.
This result illustrates that, although the far-field displacements are not sensitive to the
traction redistribution as previously discussed, they are sensitive to the magnitude of the
shear tractions developed, which, in turn, are dependent upon the friction coetlicient. The
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Fig. 10. The dependence of the steady-state strain rate on the fiber angle (n = 1): (a) Longitudinal
strain. (b) Transverse strain. (¢) Shearing strain. (d) Normalized longitudinal strain. The curves
were constructed using a tight-spline fit through 5 points at ¢ = 907, 75", 60°, S0” and 40". The
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Fig. 10.—Continued.

transverse and shear strains tlustrated in Figs 10(b,¢) are significant in that the final
specimen shape can be predicted and correlated with the experimentally observed shape.
One should note that the magnitude of the predicted shear distortions are much smaller
than the longitudinal distortions. 1t should be further noted thut the fully bonded case is
not the extremum as one may at first expect. The difference between full fiber bonrding and
debonding with a large friction coctlicient is the region of tensile bonding, apparent in Fig,
O (discussed shortly),

Finally, to atd in correlating with experimental results, Fig. 10(d) illustrates the longi-
tudinal strain rates normalized to the strain rates of the ¢ = 90 simulation. (This nor-
malization eliminates the shear viscosity of the matrix, i.¢. 4.) One interesting observation
is the chunge in the basic shape of the curves; for the bonded and low friction interface
conditions the extremum of the curves do not occur at the endpoints, in contrast to the
behavior for the high friction interface conditions. The normalized strain rates will be
discussed further in the non-Newtonian response presentation.

Another interesting {eature of the creep simulations is the growth of cavitation regions
surrounding the sides of the fiber. Figure 11 is a time evolution of the cavitation regions
forming during creep for # = | and fiber orientation angles of ¢ = 40° and 90°. The regions
continue to increase during the creep, with the cavitation region of the ¢ = 907 case being
larger than the ¢ = 40° case. By comparing Figs 10(a) and 11, it can be concluded that the
size of the cavitation at 3 = 90" is

[, ] ~ —&.,b; (where b = unit cell dimension). (22)

This relation has been used to quantify the amount of cavitation observed experimentally
in Meyer ¢f af. (1992a).

For load relaxation, the history dependence of the interface constitutive model requires
that the prior history be stated. c.g. a step loading, a steady-state creep established before
the relaxation, or some combination thereof. Figure 12(a) illustrates the real time behavior
for fiber orientation angles of ¢ = 60" and 90", with varying interface conditions, after
steady-state creep is achieved [# = 1]. Comparing with the pure matrix relaxation, a sig-
nificant effect of the interface condition and fiber orientation angle is obscerved. Figure 12(b)
illustrates the apparent stress exponent again for ¢ = 60" and 90°. For the ¢ = 90" fully
bonded case the apparent stress exponent is approximately 70% higher than for the matrix
only. The apparent stress exponent is only negligibly different from the matrix value for
the low fiher orientation angles since the responsce is more sensitive to the matrix creeping
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Fig. 11. An illustration of interface cavitation for two fiber orientation angles [n = L, u = 0.1},

normalized with respect to the fiber radius. The amount of cavitation is smaller for the ¢ = 40°

case, due to the in-plane stresses being lower and due to the slip direction of the contacting region
being primarily out-of-plane (c.[. Fig. 6 and cqn (A4)).

behavior, Finally, it is also observed that the apparent stress exponent approaches | as the
local stress rate decreases.

The sensitivity of the steady-state strain rate to the fiber orientation angle for a non-
Newtonian matrix rheology is iHustrated in Fig. 13 tor three interface conditions and using
the normalized strain rute approach of Fig. 10(d). The sensitivity is quite dramatic for low
fiber orientation angles and small amounts of interfucial friction, however for the high
friction coeflicients und the fully bonded interfuce condition the stress exponent has only a
small effect. The load relaxation results are similar to those outlined for n = 1; as an example
the apparent stress exponent varies in the four cases illustrated above from 2.9 to 3.8 using
a matrix stress exponent of 3. The traction evolution is similar to those illustrated forn = 1.

The model results presented using the steady-state creep rates are dependent upon six
independent quantities : the four initial material constants for the fiber and the matrix, the
stress exponent (a), and the friction coefficient (). It should be noted that a determination
of the initial material constants within the composite is ditficult experimentally, and in
addition, a large degree of anisotropy is thought to exist within the fibers. Thus, any
sensitivity of the model to the sclected material constants would be a very serious limitation
for assessing the interface and creep behavior. For this reason, a sensitivity study was
undertaken to examine the effects of changing each of the material parameters. For all four
material parameters, a variation of 25% produces less than a | % change in the steady-state
creep rates of Fig. 10: however, uas one would expect, a substantial change is observed in
the total strains, In addition, the change in the material parameters has a substantial effect
on the real time load relaxation behavior of Fig. 12(a), however, the apparent stress
exponents of Fig. 12(b) arc only slightly affected. These observations along with the
debonding discussion in Section 4 lead to the conclusion that the steady-state creep rate
and the apparent stress cxponent are the appropriate quantities for this analysis!

With the modeling sensitivities just presented, the determination of the interface
response using the method prescribed can be summarized by noting that the steady-state
strain rate dependence on the fiber orientation angle is a function of two intrinsic material
parameters, the coefficient of friction u and the stress exponent n. By analysing the composite
behavior in creep and load relaxation tests, these two parameters can be determined. Thus,
the analysis just presented allows for not only quantifying the interface behavior, but also
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that the fibers with a bonded interface can have a significant impact on the measured stress exponent
for high fiber orientation angles,

it is useful for quantifying the in situ creeping behavior of the matrix material within the
composite!

8. EXPERIMENTAL CORRELATION

Figure 14 contains the experimental results for Meyer et al. (1992a), plotted with the
normalized analytical curves for four varying interface conditions and a stress exponent of
n = 3. The puissunce of this method is apparent not only for assessing the interfacial
response but also for assessing the creeping behavior of the context of the nonlinear
Maxwell fluid. Clearly the interface is debonded (substantiated by microscopy work), and
furthermore it is apparent that the other extreme of frictionless sliding does not occur. The
slight discrepancy of the model for the fiber orientation angle of ¢ = 60° may be attributed
to the inability to fully facilitate translation of the specimen ends; this idea is discussed
further in Meyer er al. (1992a).

Using a stress exponent of n = 3 (obtained from the experimental relaxation data), the
model predicts a friction coefficient of u = 0.7 at 1300°C and decreasing to 0.4 at 1310°C.
Previous nanoindenter experiments on similar composite systems have resulted in values
from u = 0.1 to 1.0 (Bright er al., 1989 ; Marshail and Oliver, 1987).
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to be approximately g = 0.4 to 0.7, with a substantial temperature variation.
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Scveral modifications that may lead to an improved model with a more accurate

9. CONCLUSIONS

prediction of the creep and relaxation behavior include : (1) an improved constitutive model
for the matrix (including a model for residual glass effects), (2) possible anisotropic response
of the composite due to fabrication (i.c. unidirectional pressing), and (3) a larger fiber
grouping model, such as a triangle packing model (Brockenbrough er af., 1991). Lower
fiber angles could also be examined, however precautions should be taken to ensure a
homogencous deformation of the fiber -matrix system [i.c. microfiber buckling could become
an important deformation mechanism in the composite as @ — 0 (Steif, 1988)].

The solution of the creep/load relaxation behavior of a ceramic composite given a non-

Newtonian rchology and a non-linear interface slip mechanism at the fiber-matrix interface
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has been solved through the use of a penalty method coupled with a deformation and
incremental plasticity theory. The results indicate that the interface mechanical behavior
can be evaluated in creep, load-relaxation tests on bulk composite specimens. With a proper
characterization of the constitutive parameters, the full interface behavior can be evaluated
at elevated temperatures.
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APPENDIX A

The formulation first assumes an additive decomposition of the incremental displacement jump, similar to
that found in small-displascement gradicent plasticity.,

o) =fol + ] (AD

where the superseripts ¢ and s denote clastic and slip, respectively. Also, a lincar relation between the traction
increment and the clastic (penalized) part of the incremental displacement jump is assumed,

t = Eal", (A2)

where E* is a diagonal matrix of penalty numbers which in the limit as E* — 20 would provide for fuli compatibility
without slipping or interpenctration along the interface.
A final postulate is made concerning the directional nature of the slip,
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0 F<0 or F<0,

]t = A3
[« Aa—e’t-{ F=0 and F=0, (A3

where A is a parameter with the units of displacement rate, H is the slip potential. and F is the slip function, which
in the case of three-dimensional Coulomb friction are [see Michalowski and Mroz (1978) and Curnier (1984)]:

F= /0 +th+m,, H= i+ (Ad)

where ¢,, and ¢,; are two orthogonal tractions that are tangential to the interface [Fig. 3(a)].
For the case of F = 0 and £ = 0, the traction increment can be written as

ct ¢t
TOF_oH
wE

t=EJul. where E=E° | I (AS)

The full constitutive law can therefore be stated by combining (13). (A.2) and (AS):

E'. [u]'a>0;F<0orf<0
t=E®[u], where ET = (K, [u]'n>0.F=0and £F=0 (AS)
0. [u]-ng0,

where the total displacement jump [u] is the integral of the incremental displacement jumps over the time history.

APPENDIX B

Equation (14) can be rewritten by considering the weak form for cach of the continuum bodies and the
interfaces for some finite thickness (see Fig. 2), integrating with respect to time, and after which summing over
all bodics and taking the limit as the interface thickness approaches zero,

e U; alw.i) = 4 B2 —d(w,ta) YweW

awau) =G Y | Ve:(VutVu")dV+ (K -1{6) i '[ tr (Vw) tr (Va)d ¥V
3

-t S f-1

d(w.t.u)a}n: Z [w]-Ev (o [s]ds
a,

=1 =i n

sy j: wtdv+ S| wehds (B1)

i=1 st JUarf),

£ =2'_‘l L é[z‘ic]"qw:suv

W=lwell'lw=0o0nl}
U={ieH'la=gonTl,}

where the impenctrability condition wus dropped since the constitutive law is enforced using a penalty method,
and the set of velocity functions 4, have been extended to the set of functions whose first derivatives are contained
within a Sobolov normed space (i.c. square integrable derivatives). For the notation, the jump in the weighting
functions w is defined as {w] = w'—w’ and the traction is defined as t = Ton',

An isoparametric fimite element formulation using a Bubnov-Galerkin approach, allows (B.1) to be written

as
[K+K~(:_,1_..)|Ad=F-F'“‘+I'r'(z)d:. (B2)
with,
1 t
K= J. J {ZGB'B+ (K— %;—;)Q'B}Jdl’.
-1 g1
]
K®(lnulmeoi) = J‘ MT{OE™ (1) + (| =0)E™ (L, )}MT dS,,
-1

F=Jl J' N'deVa+JI N'MdSo—JI '[' {zos;n,+(1<- ?)B:B,}Agjdl’o

—J‘ MI{OE™ (1) + (1 —DET(r,., N Ag) dS,. (B3)
]

SAS 29:20-K
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s

1
e =J f {ﬂcafa.p(x‘ —3(—;) fﬁ}a{: Wb, + ‘ MTi(r,1d dS.,
-3 3

. O oy
F(n f j Sm[ ]B st dby,

where the deviatoric stress vector (s), the shape function operators (B and M), and the Jacobian determinants (J)
are defined in Meyer er al. (1992b). The form of the stiffness matrix is given in Fig. 4 where the full length rows
result from the common degrees of freedom given in eqns (1) and (2).



